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Abstract

Rainfall is considered as one of the major component of the hydrological process, it
takes significant part of evaluating drought and flooding events. Therefore, it is im-
portant to have accurate model for rainfall forecasting. Recently, several data-driven
modeling approaches have been investigated to perform such forecasting task such
as Multi-Layer Perceptron Neural Networks (MLP-NN). In fact, the rainfall time series
modeling involves an important temporal dimension. On the other hand, the classical
MLP-NN is a static and memoryless network architecture that is effective for complex
nonlinear static mapping. This research focuses on investigating the potential of intro-
ducing a neural network that could address the temporal relationships of the rainfall
series.

Two different static neural networks and one dynamic neural network namely; Multi-
Layer Peceptron Neural network (MLP-NN), Radial Basis Function Neural Network
(RBFNN) and Input Delay Neural Network (IDNN), respectively, have been examined
in this study. Those models had been developed for two time horizon in monthly and
weekly rainfall basis forecasting at Klang River, Malaysia. Data collected over 12yr
(1997—-2008) on weekly basis and 22 yr (1987—2008) for monthly basis were used to
develop and examine the performance of the proposed models. Comprehensive com-
parison analyses were carried out to evaluate the performance of the proposed static
and dynamic neural network. Results showed that MLP-NN neural network model able
to follow the similar trend of the actual rainfall, yet it still relatively poor. RBFNN model
achieved better accuracy over the MLP-NN model. Moreover, the forecasting accu-
racy of the IDNN model outperformed during training and testing stage which prove
a consistent level of accuracy with seen and unseen data. Furthermore, the IDNN
significantly enhance the forecasting accuracy if compared with the other static neural
network model as they could memorize the sequential or time varying patterns.
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1 Introduction

Characteristic and amount of rainfall is not easily known until it occurs. As rainfall plays
a crucial role on evaluation and management of drought and flood events, it is very im-
portant to be able to forecast rainfall before it occurs. However, in the past most of the
methods used in rainfall forecasting are regression or auto-regression linear models
which their ability is limited in dealing with natural phenomenon with non-linear trend
(de Vos and Rientjes, 2005; Hung et al., 2009; Modarres, 2009). Time variations of
rainfall rate have always been forecasted for actual use in advance of the daily activi-
ties. It is so important to mention that models for rainfall forecasting are fundamental
tools in water resources studies, since they determine and provide the basis in estab-
lishing future reservoir water inflows. These predictions are of significance importance
in the planning of water resources system, being responsible for the optimization of the
system as a whole. This is why rainfall forecasting is a fundamental topic in many en-
gineering applications like constructing dams, analysis and forecasting, planning and
designing of reservoirs, hydro-power generation, irrigation, water management, con-
trolling floods and others.

The rainfall forecasting problem has been traditionally tackled using linear tech-
niques, such as AR, ARMAX, and Kalman filter, and also using nonlinear regression
(see Cheng, 1994; Alvisi, et al., 2006; Abrahart and See, 2007; Bras and Rodriguez-
lturbe, 1985; Chiu, 1978; Box and Jenkins, 1970). Most of the forecasting methods
consider one-day ahead forecast. For the rainfall a longer term forecast such as ten-
day ahead or a month ahead is more of interest, though it is more difficult than the
one-day ahead problem. In fact, there are several considerable drawbacks to the use
of KF in rainfall forecasting application. These include: (1) the necessity of accurate
stochastic modeling, which may not be possible in the case for rainfall; (2) the re-
quirement for apriori information of the system measurement and develop covariance
matrices for each new pattern, which could be challenging to accurately determine and
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(3) the weak observability of some of temporal pattern states that may lead to un-stable
estimates for the forecasted value (see Noureldin et al., 2007, 2011).

In this context, motivation for utilizing non-linear modeling approach based Artificial
Intelligence (Al) modeling have received considerable attention from the hydrologists in
the last two decades (Boucher et al., 2010; Vos and Rientjes, 2005). Lapedes and Far-
ber (1987) conduct a simulated study and conclude that ANN can be used for modeling
and forecasting nonlinear time-series. Recently, numerous ANN-based rainfall-runoff
models have been proposed to forecast streamflow (Hsu et al., 1995; Thirumalaiah
and Deo, 1998, 2000; Campolo et al., 1999; Sajikumar and Thandaveswara, 1999;
Tokar and Johnson, 1999; Zealand et al., 1999) and reservoir inflow (Saad et al., 1996;
Jain et al., 1999; Coulibaly et al., 2000a,b). In addition, neural networks and fuzzy
logic have been used as effective modeling tools in different environmental processes
such as wastewater treatment, water treatment and air pollution. Cinar et al. (2006)
used an artificial neural network to predict the performance of a membrane bioreactor.
They were able to estimate concentrations of chemical oxygen demand, phosphate,
ammonia and nitrate. Altunkaynak et al. (2005a) used fuzzy logic modeling to forecast
dissolved oxygen concentration. Altunkaynak et al. (2005b) compared the accuracy of
fuzzy logic modeling and autoregressive integrated moving average (ARIMA) models
in predicting water consumption in a city. They found that relative error rates for fuzzy
logic and ARIMA were 2.5 and 2.8, respectively.

Recently, the authors developed several Al-based inflow forecasting architectures
using Multi-Layer Perceptron Neural Networks (MLPNN), Radial Basis Function Neural
Networks (RBFNN) and Adaptive Neuron-Fuzzy Inference Systems (ANFIS) at Aswan
High Dam, Nile River, Egypt (Elshafie and Noureldin, 2011). The main idea behind all
of these methods is to mimic the latest inflow pattern to forecast the inflow for 3 months
ahead. The major drawback of such models is their inability to mimic the temporal
inflow pattern trend during the model training stage procedure. Therefore, any of the
existing Al-based models may not be capable of providing a reliable and accurate fore-
casting solution.
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In this research, we aim at developing an Al-based rainfall forecasting model taking
into consideration the temporal pattern trend and thus providing a better forecasting
accuracy. Such technique combines the advantages of some of the existing models
with the advantages of dynamic neural networks in representing the sequential process
in the input data (the latest rainfall pattern). In this way, it should be possible for the
proposed model to mimic the temporal pattern of the rainfall based on the current and
some past. The proposed model will be carried out utilizing real rainfall records at
Klang River, Malaysia. Finally, comprehensive comparative analyses are performed
in order to examine the significance of utilizing the dynamic neural network over the
classical static neural network methods.

2 Artificial neural network

Artificial Neural Network (ANN) is a parallel computing mathematical model for solving
nonlinear time series problems. ANN can solve non-linear problems based on network
architecture and activation transfer function that is employed. In this study, we evaluate
two different static neural network methods, MLP-NN and RBFNN and one dynamic
neural Network (IDNN). Hereafter, a brief explanation of all those neural network meth-
ods will be introduced.

2.1 Static neural network
2.1.1 Multi-layer perceptron

The network architecture of the MLP-NN is shown in Fig. 1. ANN architecture contains
three types of layers. The layers are input layer, hidden layer and output layer. Each
layer consists of one or more neurons. There are two types of neuron. First are passive
neurons that relay data input as data output. Another is active neuron that computes
data input using Activation Transfer Function (ATF) and produces an output. The most
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commonly use of ATF in the hidden and output neuron is sigmoid function (Zhang
et al., 1998; Fernando et al., 2000). The input into an active neuron is a summation
of previous neuron’s output and its weight and the output is a computation of sigmoid
function on the input. The process is shown in Fig. 1 and the equations for the input
and output are:

n
input:/ (w;j.x;;) where xo =1, (1)

output =

1 + @—kinput’ (2)
where x is the output from previous neuron, w is the weight of the output and k is the
slope steepness of the sigmoid function. Extra neuron x, is added in input layer and
hidden layer with output value of 1. This is called bias and its function is to stabilize
computed output between 0 and 1. It does not have link from previous neuron.

2.1.2 Radial basis function

The structure of a RBFNN consists of an input layer, one hidden layer and an output
layer, see Fig. 2. The input layer connects the inputs to the network. The hidden layer
applies a non-linear transformation from the input space to the hidden space. The
output layer applies a linear transformation from the hidden space to the output space,
see Mark (1996).

The radial basis functions ¢,¢5,,...,¢py are known as hidden functions while
{d),-(x)}f.v=1 is called the hidden space. The number of basis functions (N) is typically
less than the number of data points available for the input data set. Among several
radial basis functions, the most commonly used is the Gaussian, which in its one-
dimensional representation takes the following form:

e
d(xu)y=e 22 (3)
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where u is the center of the Gaussian function (mean value of x) and ¢ is the dis-
tance (radius) from the center of ¢(x,u), which gives a measure of the spread of the
Gaussian curve.

The hidden units use the radial basis function. If a Gaussian function is used, the
output of each hidden unit depends on the distance of the input x from the center u.
During the training procedure, the center y and the spread d are the parameters to be
determined. It can be deduced from the Gaussian radial function that a hidden unit is
more sensitive to data points near the centre. This sensitivity can be tuned (adjusted)
by controlling the spread d. Figure 3 shows an example of a Gaussian radial function.
It can be observed that the larger the spread, the less the sensitivity of the radial basis
function to the input data. The number of radial basis functions inside the hidden layer
depends on the complexity of the mapping to be modeled and not on the size of the
data set, which is the case when utilizing multi-layer perceptron ANN (see Ripley, 1996;
Bishop, 1996; Haykin, 1994).

2.2 Dynamic neural network

2.2.1 Motivation

The rainfall forecasting model used by KF and or ARMA is a linearized one. In addi-
tion the extension of those methods to include stochastic pattern of the rainfall is also
linearized in the form of 1st order difference equations. The non-linear and the non
stationary parts of the rainfall pattern are not modeled for KF or ARMA, thus deterio-
rating the forecasting accuracy. This leads to relatively poor forecasting for the rainfall.
The non-linear complex Al — based modeling capabilities is therefore suggested in
this study. The benefit of utilizing Al-methods over the conventional method (KF and
ARMA) that none of the above drawbacks could be found while utilizing the Al-methods.
Furthermore, the advantage of utilizing the proposed IDNN over the other Al-methods
that IDNN method is performing a temporal processing that gives the model complete
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information about the temporal relationship of the input pattern, which is the main chal-
lenge in studying the rainfall pattern that incorporate major temporal dimension.

2.2.2 Input delay neural network

Dynamic networks are generally more powerful than static networks (although they
may be somewhat more difficult to train) (Ripley, 1996; Bishop, 1996). Because dy-
namic networks have memory, they can be trained to learn sequential or time-varying
patterns. In fact, in order to predict temporal patterns, an ANN requires two distinct
components: a memory and an associator. The memory holds the relevant past infor-
mation, and the associator uses the memory to predict future events. In this case the
associator is simply a static MLPNN network, and the memory is generated by a time
delay unit (or shift register) that constitutes the tapped delay line (Ripley, 1996; Bishop,
1996). In fact, the MLPNN or other static neural network type model do not perform
temporal processing since the vector space input encoding gives the model no infor-
mation about the temporal relationship of the inputs. Traditional MLPNN is a static and
memoryless network that is effective for complex non-linear static mapping. In fact,
rainfall forecasting is a procedure where previous states of rainfall values have to be
seriously considered. Apparently, rainfall process modeling involves a major tempo-
ral dimension and in the ANNs context there are efficient methods to represent and
process such models (Haykin, 1994).

Figure 4 shows the general architecture of an Input Delay Neural Network (IDNN)
in addition to zooming on the internal structure of a single neuron. The case shown
in Fig. 4 considers a tapped delay line that involves the p most recent inputs. In this
example, we show three delay elements represented by the operator d. For a case
of p delay elements and an input variable x(t), the network processes x(t), x(f — 1),
x(t-2), ..., and x(f — p), where p is known as the tapped delay line memory length
(Haykin, 1994). Therefore, the input signal S;(f) to the neuron / (Fig. 1) is given as:
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Si(t) = D wi(k)x(t —k)+b (4)
k=0

where w;(k) is the synaptic weight for neuron /, and b, is its bias. Then the output
of this neuron (U;) is obtained by processing S;(f) by the non-linear activation function
G(.), chosen as a sigmoid activation function of neuron /.

p

U =G <Z w;(k)x(t - k) + b,-> (5)

k=0

G(S(0) = —— ©)
A HPECTD)

The output of the IDNN, assuming that it has one output neuron j, a single hidden layer

with m hidden neurons, and one input variable as shown in Fig. 4, is given by

yit)=F <Z w;iUj + a,) (7)
i=1

where F(.) is the transfer activation function of the output neuron j (which can be
chosen to be a sigmoid or a linear function), a; is its bias and w;; is the weight between
the neurons of the hidden layer and the neuron of the output layer.

During the update procedure, we use a second-order back-propagation variation;
namely the Levenberg-Marquardt back-propagation (LMBP). The network training pro-
cess is performed by providing input-output data to the network, which targets mini-
mizing the error function by optimizing the network weights. LMBP uses the second
derivative of the error matrix (E) to update the weights of the network in a recursive
fashion (Haykin, 1994).
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3 Study area and data collection

The Klang River Basin is located on the west coast of Peninsular Malaysia and encom-
passes the Federal Territory of Kuala Lumpur, parts of Gombak, Hulu Langat, Klang,
and Petaling districts in Selangore Stats, and the municipal areas of Ampang Jaya,
Petaling Jaya, and Shah Alam. Klang is geographically located at latitude (3.233°)
3°13' 58" N of the Equator and longitude (101.75°) 101° 45’ 0" E of the Prime Meridian
on the Map of Kuala Lumpur. The study area location map has been shown in Fig. 5.

The Klang River originates in the mountainous area about 25 km northeast of Kuala
Lumpur. It is joined by 11 major tributaries while passing through the Federal Territory
and the area downstream of Kuala Lumpur, before joining the Straits of Malacca at
port Klang. The Klang River has a total lengh of about 120 km. The basin is 1290 kmz,
about 35 % of which has been developed for residental, commercial, industrial, and
instituionsl use. The upper catchments of the Klang River and its tributaries — the
Gombak and Batu Rivers — are covered with well maintained forests. However, the
lower reaches of the basin, with extensive urban land development activities, are major
contributors of sediment load and flood peaks (Tan, 2009; Hiew, 1996; Gibson and
Dodge, 1983).

It is also characterized by uniform high temperature, high relative humidity, heavy
rainfall and little wind. All information and data that are available about Klang River were
based on Klang gates dam data. For this study, the data used were from year 1986
to 2008 (monthly basis) and between 1997 and 2008 (weekly basis). The available
data for catchment is divided into two groups: training set (calibration) and a testing
set (validation). The rainfall data statistics have been investigated, including maximum,
minimum and mean averages. The average annual rainfall depth in the study area is
about 2400 mm. The highest rainfall occurs in the month of April and November with
a mean of 280 mm. The lowest rainfall occurs in the month of June with a mean of
115mm. The rainfall data on monthly and weekly basis is shown in Figs. 6 and 7,
respectively (Tan, 2009; Hiew, 1996; Gibson and Dodge, 1983). For monthly rainfall
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forecasting, total monthly rainfall data is 261 which containing 237 samples was used
for training and another 24 samples was used to test the generalization ability of the
networks. Whereas for weekly forecasting, total weekly rainfall data is 621 which con-
taining 571 samples was used for training and the rest containing 50 samples was used
to test the generalization ability of the networks.

One of the steps of data pre-processing is data normalization. The need to make
harmony and balance between network data range and activation function used causes
the data to be normal in activation function range. Sigmoid logarithm function is used
for all layers. By considering Sigmoid, it can be seen that the range is between 0 and
1, so data must be normalized between 0, 1 (Eq. 8). The following formula was used:
Xp= ®

max — ~‘min
where x is actual data and x,,, is minimum value of original series and x,,, iS maxi-
mum value of original series.

4 Methodology

Most neural network approaches to the problem of forecasting use a multilayer network
trained using the back-propagation algorithm. Consider a time series x(1),...,x(t),
where it is required to forecast the value of x(f +1). The inputs to the multilayer network
are typically chosen as the previous k values x(t — k +1),...,x(f) and the output will
be the forecast. The network is trained and tested on sufficiently training and testing
sets that are extracted from the historical time series. In addition to previous time
series values, one can utilize as inputs the values or forecasts of other time series
(or external variables) that have a correlated or causal relationship with the series
to be forecasted. For our rainfall forecasting problem such time series could be the
temperature and relative humidity at the river basin. For the majority of forecasting
problems such external inputs are not available or are difficult to obtain. As is the
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case with many neural-network applications, preprocessing the inputs and the outputs
can improve the results significantly. Input and output preprocessing means extracting
features from the inputs and transforming the target outputs in a way that makes it
easier for the network to extract useful information from the inputs and associate it with
the required outputs. Preprocessing is considered an “art”, and there are no set rules
to choose it. Even some very intuitively appropriate transformations may turn out of no
value when checking the actual results. For our case the main inputs are the previous
time series values. We have used normalization as a preprocessing of the inputs (as
described Sect. 3).

4.1 Model structure

Generally, formation of an appropriate architecture of a neural network for a particular
application is an essential step and issue since the network topology directly affects
not only its computational complexity and its generalization capability but also the ac-
curacy level. Different theoretical and experimental studies have shown that larger-
than-necessary networks tend to over-fit the training samples and thus have poor gen-
eralization performance and low accuracy level for the unseen data, while too-small
networks (that is, with very few hidden neurons) will have difficulty learning the training
data. Currently there is no established methodology for selecting the appropriate net-
work architecture prior to training. Therefore, we resort to the trial-and-error method
commonly used for network design. In addition, the performance goal (mean square
error MSE) for the model during the training stage was forced to be 107, thus the
neural network is guaranteed to hedge over-fitting the training data.

One more important step in the model implementation, especially in the multivariate
ANN forecasting context is the selection of appropriate input variables, since it provides
the basic information about the system considered. In current study, the available data
is the historical rainfall records, thus, different input pattern in terms of the length of the
previous rainfall records (window size = w) have been examined. Five window sizes
(w=1, 2, 3, 4 and 5) were considered in this study. Searching for the best window
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size is evaluated via two statistical indexes during training to determine the relative im-
portance of each window size on the model accuracy level and generalization. Details
about the model performance evaluation will be described in the following section.

A common method is to consider a sliding (or moving) window of input sequences.
This approach has been widely used with the standard MLP-NN. In this case, a fixed
number of past items of information are selected and introduced to the input layer of the
network. For instance, if it is required to model the rainfall pattern based on the input at
the present time instant and the past two samples (window size = 3), the ML-PNN input
layer should have three input neurons see Fig. 8. Therefore, the network is provided
with a static memory that is specifically expert knowledge-dependent, which is consider
as major limitation of the MLP-NN, particularly and the implementation does not have
a temporal dimension. The time line index for the proposed model process is presented
in Fig. 9. The upper part of the Fig. 9 shows the process while utilizing the static neural
network (MLP-NN and RBFNN) model.

On the other hand, the IDNN model with a sliding window input sequence is shown
in lower part of Fig. 9. In this study, one and two time-step input delay sequences will
be considered. The second-order delay effect will be considered by training the IDNN
model to experience, in the input layer, the previous one time-step sample in addition
to the present rainfall record. Moreover, the higher-order error can be considered by
having two and three time-step delay inputs. In Sect. 5.1, the impact of using one and
two input delay elements will be demonstrated and discussed.

It should be noted here that a static neural network with four input pattern (window
size = 4) is not similar to a dynamic neural network with three input pattern (window
size = 3) with one-time-step input delay. This is due to that the dynamic neural network
incorporates the associator (network weights and bias) procedures at the current time
step and memorizes the past information (network weights and bias) from the previous
time step, while the static neural network only handle certain time step with longer input
pattern.
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Recall that our collected rainfall data spanned the period from 1986 to 2008 on
monthly basis and from 1997 to 2008 on weekly basis, then, our forecasting model
algorithm established for these two time series horizon.

4.2 Training algorithm

The neurons in the network architecture are interconnected between the layers. These
interconnections represent flow of computation in the ANN. The computation starts
from input neurons where data input are received and then propagates to hidden neu-
rons and further to output neuron. Neuron in the output layer produces model output.
The computational process that is described above is called feed forward computation.
If number of neurons and layers are established, the only unknown parameter in the
computation is the weights. The process of data training determines the weights. Data
training is a process of feeding sample historical data to the input and output of the
network model so that the network model can simulate the sample data. The data
training process involved feed-forward and back-propagation computation cycles. The
back-propagation computation is an adjustment of output and hidden neuron’s weights
based on gradient descent method. These weights are normally initialized with random
values to speed up the data training process to solution.

For optimization purposes, we use a second-order back-propagation variation —
namely the Levenberg-Marquardt back-propagation (LMBP) — for the IDNN training.
This method uses the approximate Hessian matrix in the weight update procedure as
follows:

AW, = -[H+ull"J'r 9)

where r = residual error, u = variable small scalar that controls the learning process, J =
AE = Jacobian matrix, £ = cost function, and H = J'J denotes the approximate Hessian
matrix. In practice, this method has been found effective in finding better optima than
standard back-propagation and the conjugate gradient descent method (Hagan and
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Menhaj, 1994). A detailed description of this algorithm is proposed by Masters (1995).
Here the LMBP algorithm is also used to train the all proposed network models.

Upon successful of data training, data forecasting can be made to new data input. To
evaluate forecasting performance, validation data are feed only to the input of network
model where single feed-forward computation computes the data. The output of the
computation is the model output. Several performance measures are applied to model
outputs and observed outputs from validation dataset to determine the accuracy and
reliability of the network model developed.

4.3 Model performance criteria

To compare and evaluate the effectiveness of rainfall forecasting model applied at
Klang Gates Dam, models are assessing on the basis of important performance mea-
sures. Although, all models achieved a MSE of less than 107 during the training
process, it is important to examine the model performance utilizing different input se-
quences and pattern. Consequently, statistical analysis for the model output in the
testing session utilizing the inflow data for the period between 1998 and 2003 was
carried out in order to evaluate the model performances. To analyze the fittingness of
forecasted inflow with the natural inflow during the testing period, two statistical mea-
sures were used to examine the goodness to fit of the proposed models methods to
the testing data. These measures include the RMSE (Root Mean Square Error) and
the maximum relative error (RE) to examine the relative accuracy of both models for
each inflow event as represented by Egs. (7) and (8).

1 N 0.5

— 2
RMSE = <NZ(H,—R,") > (10)

2~ (R,-R
MaxRE:maxZ( m f)-1oo (11)

R

n=1
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where, A; is the Rainfall at Klang River, R, is the actual rainfall and N is the number of
the months/weeks.

In addition, as the forecasting accuracy of the peak and low inflow events is of par-
ticular interest of the reservoir operation, it is important to evaluate the model per-
formance considering these inflow events. In order to assess the model performance
during these events, another two error criteria are also utilized Peak Flow Criteria (PFC)
and Low Flow Criteria (LFC), which can be computed by Egs. (9) and (10)

Tp 0.25
<Z<Hm—ﬁ,>2-(ﬁm>2>

=1
T 0.5
<§ (Rm)2>

0.25
(R -R ) (Rm>2>

. 05
( (Rn02>
i=1

where T, =number of peak rainfall greater than one-third of the mean peak rainfall
observed; T; = number of low rainfall lower than one-third of the mean low rainfall ob-
served. Coulibaly (2001) reported that both PFC and LFC provide better performance
indicators for assessment of the forecasting model performance for the extreme rainfall
events. As the model can provide low PFC or LFC as the model represents better fit.
One more index is examined for the proposed model which is evaluating the conse-
quences of the rainfall. In fact, the model could provide relatively good fit in terms of
the error values; however, the forecasting values might not follow the consequences
changes of the rainfall pattern values. For example, in case the difference between
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two consequence actual values of rainfall is positive [(R,,(t + 1) — R,,(t) > 0], while if
examined using the forecasted value is negative [R;(f + 1) - R,,(t) < O], even the model
might provide forecasted value with relatively small error value, it is considerable draw-
back of the model performance and shows mismatching with the real rainfall pattern
consequences.

All the development made on this study was implemented using MATLAB computer-
aided design software (Mathworks, Natick, MA). The Neural Network toolbox of MAT-
LAB was utilized and the code was set up to include all the above procedures.

5 Results and discussions

The forecasting model architecture described in Sect. 4 is applied on monthly and
weekly rainfall data at Klang River, Malaysia. In fact, the procedure of the study began
with utilizing the MLP-NN method searching for best model configuration in term of
input pattern (window size), then use this window size in the other methods. This way
makes sure that the comparative analysis between all proposed methods is adequately
performed.

All networks successfully achieved the target MSE of 1074, For example, the training
curve utilizing the MLP-NN method for the weekly data is demonstrated in Fig. 10
showing convergence to the target MSE after 563 iterations. This section is organized
to present the results for each method individually followed by evaluation of optimal
model based on the model criterion indexes presented in Sect. 4.3.

5.1 Forecasting utilizing MLP-NN

Several trails and error in order to search for the optimal MLP-NN architecture have
been carried out. One and two hidden layers and number of neurons ranging between
one to ten, different transfer function (tan sigmoid, log sigmoid, linear) and finally dif-
ferent window sizes (w =1 to w =5) have been examined in order to attain the optimal
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model configuration. In fact, the procedure is performed by implementing all trails for
number of hidden layer, number of neuron in each layer and the type of transfer func-
tion, while keep the window size unchangeable. Then, repeat all the trials again at
the other window size. Such procedure was applied for both weekly and monthly time
horizon as the objective for this study.

In this context, the model configuration that provides best performance in terms of
lower maximum relative error and RMSE while training procedure is selected. For the
weekly basis horizon, the optimal model configuration is achieved when the window
size = 4 (number of neurons in the input layer), two hidden layers with number of neuron
equal to 8 and 5, respectively, and log sigmoid transfer function between input layer to
hidden layer #1 and from hidden layer #1 and #2 and linear transfer function between
hidden layer #2 and the output layer. On the other hand, the optimal architecture for
the monthly basis horizon is attained when window size = 3 and one hidden layer with
7 neurons. The transfer functions are tan sigmoid and linear between input layer and
hidden layer #1 and from hidden layer #1 to output layer, respectively.

Figure 11 shows the performance of monthly and weekly rainfall forecasting using
MLP-NN model. Figure 11a shows the RE for the monthly basis forecasting data used
for training, it could be depicted that the maximum RE is 25 % while the RMSE is
55.6 mm. Whereas, the performance for the unseen data during the testing stage is
about 65 % as the maximum RE and RMSE equal to 79.89 mm, see Fig. 11b. It should
be noticed here, that RE during the testing is almost 3 times that one experienced
during the training stage.

On the other hand, Fig. 11c shows the MLP-NN model while examining the data on
weekly basis during the training. It could be observed that, although the model provides
maximum RE at 50 % during training which is relatively high if compared with the case
for monthly basis, the performance of the model during the testing stage as shown in
Fig. 11d is also within the same range (except one odd case at week #17, RE equal to
80 %), which is not the case for the model on monthly basis. Such observation shows
that the model for weekly basis provides higher consistent level over the monthly basis,
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it might be due the fact that the model for weekly basis incorporates large data records
for training that allow the model to mimic several pattern and able to provide same
level of accuracy during testing. Such observation could be confirmed when examine
the RMSE during the training and testing stages which are 37.2mm and 43.5mm,
respectively.

5.2 Forecasting utilizing RBFNN model

Keeping in mind that the optimal window size achieved based on MLP-NN model, 3 and
4 for monthly and weekly, respectively. It should be noticed here that the architecture
of RBFNN network is quite simple if compared with MLP-NN. Once the window size
(input pattern) was resolved, adjustment of spread of the RBFNN model configuration
is (as described in Sect. 2.1.2) the only parameter to be obtained. The spread (step
size) is achieved by trial and error as well. The optimal values of the spread were found
to be equal 0.07 for monthly and 0.03 for weekly model.

Figure 12 illustrates the accomplished results for the monthly and weekly rainfall
forecasting using the RBFNN model. For monthly basis, as demonstrated in Fig. 12a,
the RE during training is slightly increased if compared with MLP-NN, however, the RE
level is improved for the testing data Fig. 12b. It could be observed that the maximum
RE is within £ 40 %, which means considerable improvement over the MLP-NN model.
In addition, the RMSE is slightly improved to be 68.7 mm which is almost 90 % of similar
value when using MLP-NN.

For weekly basis horizon model, if Fig. 12c shows the performance of the RBFNN
during training. If the Fig. 12c is carefully examined, it could be observed that the pat-
tern of RE is similar to RE pattern using MLP-NN model, but the RE value is relatively
improved. Consequently, the performance for the RBFNN model in terms of RE is
also enhanced when examined the testing data if compared with MLP-NN model, see
Fig. 12d.
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5.3 Performances of IDNN model

Similar procedures were applied for the rainfall forecasting utilizing the IDNN model.
To investigate the effect of temporal dimension value of the rainfall at (£ + 1) (the output
of the IDNN module) on the present and past rainfall pattern inputs (the input to the
IDNN module), we examined the performance of the IDNN model for using one time
input delay element to the case of two input delay elements. In case of one time input
delay, Fig. 13 shows the performance for monthly and weekly basis horizon. As can be
depicted from Fig. 13a, that significant enhancements are taken place in the forecasting
accuracy in terms of the relative error. The maximum RE does not go behind 12 %
which is almost one-third of maximum RE experienced using MLP-NN and RBFNN. In
addition, it is noticeable that a considerable improvement in the maximum RE (+ 20 %)
for testing data is achieved, as shown in Fig. 13b. Similar enhancement while applying
the IDNN for the weekly basis data could be observed as shown in Fig. 13c,d.

On the other hand, in case of using two-time input delay, Table 1 shows the maximum
RE and RMSE for both training and testing stages for monthly and weekly basis utilizing
one and two input IDNN architecture. The results clearly show that utilizing two-time
input delay elements has insignificant improvements to the model performance if com-
pared to the one-time input delay IDNN architecture even worst, especially for weekly
basis model. While the proposed IDNN-based model showed slight accuracy improve-
ment when using two-time input delay elements instead of one for monthly basis model,
the additional delay element significantly complicated the training procedure.

In the light of the results presented above, apparently, the highest RMSE exists at
the MLP-NN model in monthly rainfall forecasting and it is equal to 79.89 mm whereas
the smallest value of RMSE exists at the IDNN model in weekly rainfall forecasting
model with only 7.3mm. It could be remarked that, generally, the performance for
the weekly rainfall forecasting is better than monthly rainfall forecasting. This is due
to the inadequate of historical data records on monthly basis which is 261 records,
while for weekly, historical 621 rainfall records, thus, the model could capture most of
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temporal dimension of rainfall pattern and able to provide lower forecasting error. In
addition, it is obvious that the optimal results received when using the IDNN method.
Furthermore, with one-time step input delay the IDNN is sufficient to achieve significant
level of accuracy. With respect to this observation, in Klang River Basin rainfall pattern,
it might be the temporal dimension feature of rainfall is in second order level. However,
it could be inadequate for other river basin that might require introducing higher order
level.

For further assessment, the IDNN model with one-time step input delay is examined
for the peak and low rainfall events, so that, the comparisons between the forecasted
and actual rainfall values are visually presented using the 45° line and two deviation
lines with + 15 % deviation from the 45° line and demonstrate the low, average and
peak rainfall ranges for both monthly and weekly basis as shown in Figs. 14 and 15,
respectively. The scatter plot of forecasted rainfall based monthly as depicted in Fig. 14
is a little distant from the ideal line in case of the high rainfall while it is closer to the
ideal line in the low inflow range. The same rainfall forecasting features for weekly basis
could be observed from Fig. 15. Apparently, the model provides better accuracy for the
low rainfall for either low or high rainfall seasons. This is due to the fact that the peak
rainfall events for both low and high rainfall seasons have not experienced adequately
during training period. In order to validate the previous analysis of the model perfor-
mance in providing an accurate inflow forecasting for the peak and low inflow events,
the PFC and LFC statistics as discussed above in Sect. 4.3 are presented in Table 2.
As presented in Table 2, it can be observed that the developed model can perform
the function of providing an accurate rainfall forecasting at Klang River for even for the
extreme rainfall events with error does not go above 9.2 % of the actual rainfall.

Finally, the IDNN model with one-time step in the input delay was evaluated for its
ability to model the rainfall consequences see Sect. 4.3. Table 3 shows the results for
this evaluation index. The negative values means that the model failed in matching the
rainfall consequences visa versa is the positive value. It could be observed that the
IDNN model for weekly basis forecasting is outperformed the other methods.
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6 Conclusions

This study is focusing on modeling the temporal dimension of the rainfall pattern in or-
der to achieve better rainfall forecasting results. In this context, this study investigates
three different Al-based static and dynamic methods. The proposed models imple-
mented for offering rainfall forecasting model on Klang River Basin for monthly and
weekly time horizon. The results reveal that the dynamic neural network namely IDNN
could be suitable for modeling the temporal dimension of the rainfall pattern, thus, pro-
vides better forecasting accuracy. Based on this study, IDNN model with one-time step
input delay for weekly basis rainfall forecasting achieved the optimal accuracy level.
These results could also be applicable to other studies in other river basin with dif-
ferent time step input delay according to how far is the temporal dimension of rainfall
pattern at this river basin. Therefore, it is suggested that additional studies employing
be used to evaluate the dynamic neural network forecasting performance, especially,
in the applications involve temporal dimension. The results of the present study also
show that the proposed IDNN provides better accuracy for the extreme rainfall pattern
events. In addition, the model was evaluated for matching the consequences of the
rainfall, apparently; the model performance shall follow the rainfall consequences with
significant level of accuracy due to the model could mimic the temporal rainfall pattern.
For future research in applying Al-based model, it is highly recommended to find bet-
ter and more reliable pre-processing method rather than using trial and error method
that can figure out the best input window size. In addition, it is recommended also to
study the temporal dimension order before establishing the IDNN model configuration,
in order to find the optimal input-delay length in model architecture.
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Table 1. RMSE and Maximum RE for monthly and weekly rainfall forecasting model utilizing

IDNN.

Type of model RMSE (mm) Maximum RE %
Monthly Weekly Monthly Weekly
Train Test Train Test Train Test Train Test
IDNN 92 303 22 73 74 2089 74 17.4
One-time step
IDNN 91 282 24 7.2 7.2 19.1 8.1 19.3

Two-time step
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Table 2. IDNN performance based on the peak and low flow error criteria for monthly and

weekly forecasting.

Year PFC (%) LFC (%) Average (%)
Train 4.20 1.80 3.00
Monthly 1ot 6.15 3.07 461
Weekly Train 850 2.40 5.45
Y Test 920 6.30 7.75
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Table 3. Models performance for matching the rainfall consequences.

Stage Method Monthly Percentage Weekly Percentage
Positive Negative of corrected Positive Negative of corrected
(%) (%)
MLP-NN 240 20 92 522 48 92
Train RBFNN 248 12 95 528 42 93
IDNN 235 7 90 553 17 97
MLP-NN 15 9 63 38 12 76
Test RBFNN 17 7 71 41 8 82
IDNN 20 4 83 49 1 98
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Fig. 2. Architecture of radial basis function neural network.
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Fig. 5. Local authorities within Klang River Basin.
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Fig. 7. Weekly actual rainfall records on Klang River on for period 1997—2008.
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Mean Square Error (MSE)

Fig. 10. Training curve for monthly basis using MLP-NN model.
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Fig. 15. Forecasted and actual rainfall on Klang River (monthly basis).
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